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I Introduction

Recently, Jones [1] has presented a method for overcoming the
non uniqueness problem arising in boundary integral equation formu-
lacions of the Dirichlet and Neumann problems for the Helmholtz
equation. The major portion of Jomes' analysis concerned the exterior
Neumann problem in two dimensioms although he indicated how cne
results generalised to three dimensions and suggested that the exterior
Dirichlet problem could be similarly treated. Ursell ﬁ: simplified
the proof of a key theorem in @] but confined his remarks to :he

- -

exterior Neumann problem in two dimensions. In .3_ the authors
presented a systematic exposition of boundary integral equation
formulations of both Dirichlet and Neumann probliems and presented a
number of useful properties of the boundary integral operarors arising
in both layer theoretic and Green's function approaches.
In particular it was shown that uniqueness of the boundary integral
equation formulations of exterior problems could be retained even
at eigenvalues of the corresponding adjoint interior problems by
treating a pair of coupled equationmns. That treatment dealt with chree
dimensional problems although the results remain intact when the
fundamental solution of the Helmholtz equation im n dimensions is used.
In the present note we show how Jones' modification can be

-~ -

incorporated into the boundary integral equation formalism of _3_.
Ursell's simplification is adapted to three dimensions and explicit
results are obtained for both Dirichlet and Neumann problems. in

particular it is demonstrated that a single boundary integral equation

is uniquely solvable in each case even at interior eigenvalues of the

2
.
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2.
adjoint problems by suitably modifying the Green's function in a way
suggested by Jomes' approach. Moreover in the present note it is shown
that by abandoning the restriction to real coefficients in the
modification which Jones and Ursell found sufficient to eliminmate non
uniqueness at interior eigenvalues, the coefficients may be chosen to
be optimal with respect to certain specific criteria. In particular
results are presented which show how to choose the coefficients so as
to minimize the difference between the modified and exact Green's
functions for the Dirichlet and Neumann problems and furthermore an
algorithm is presented which determines the coefficients so as to
minimize the spectral radius of the modified boundary integral
operator. Different coefficient choices result in each case.

An alternate treatment involving the explicit determination of
a set of eigenfunctions of the unmodified operator is given in :@:.

I1 Notation and definitiomns

We adopt the notation of [3] for present purposes. Thus let
D_ denote a bounded domain in R ° with boundary D and exterior D,.
The bouxdary 3D will be assumed Lyapunov and when more stringent
smoothness assumptions are needed they will be explicitly noted.

lLet R = R(P,Q) denote the distance between any two points P

and Q@ in R3. A function u (P) which satisfies
(Ve + kz)u+(P) =0, P cDU?D, 6]
3U+ -~
lim r (— - iku) =0 (2)
r_—® P Erp

will be called (following Wilcox [5 ) a radiating solution of the

Helmholtz equation where (r Ep’cp) are the spherical polar coordinates

p)




3.

of a point P relative to a Cartesian coordinate system with origin in
D_. It should be stressed that the notation in (1) is meant to imply
that there is an open domain including the boundary 5D in which u, is

differentiable. A fundamental solution of the Helmholtz equation is

given by

Yo(PyQ): - =

27R
and if g(P,Q) is a radiating solution of the Helmholtz equation in
both P and Q then
¥ (?,Q: =y (P,Q + g(P,Q)
-5 also a fundamental solutiom. If we LZ(SD) then we may obtain
standard and modified forms of single and double laver distributions

of density w according to whether Yo 0T M is emploved as the

fundamental solution. Thus we have, for j = 0,1, 1
1
(S.w)(P): = w(q) v.(P,q)ds_, P ¢ IR (5)
J ‘;"D J q
o
1 v,
) HEE —i c 3 \ y
(DJw (p) - w(q)_dn (P,q)dsq, P IR (6)
* 3D q
where ;%— is the derivative in the direction of the outward normal tc
n, i .
oD at the point g (nq points 1inco D+). Further we write P and
a =z
ré: to demote the normal derivatives when P = p ¢ 3D from D_ and D_ .
o
respectively.

Denote by Kj the boundary integral operator, compact on Lz(SD) as

well as C_(3D), (Mikhlin [6]), definmed by

5%}

V.
w(g) —L (P,q) ds_, p ¢ 3D (7)
/3D LS 9

(Kjw)(P): =

with L, adjoint

L G . G S -




by
—
< 3D %q

(K; wi(P): = { w(q) (?,q) dsq, pe 3D (8)

Q

where a bar is used to denote complex conjugate. In terms of Kj the

jump conditions for the single and double layer distributions are

9 _ ~
——E (Sjw) =+ W+ Kjw, p e &D (9)
an
P
and
. - -k
lim D.w=+w+ K. w, p ¢ 2D, (10)
Popr ’

Note that g(? Q) must be defined in a neighbourhood of 5D in rder
for (9) to have meaning.

If the normal derivative of the double layer exists (e.g. 1if

w < C;(3D)) then, e.g. Guater 7

!
-

~

ot (Djw) = Ta= (Djw) (11)

The existence of the normal derivative of the double laver when

the density arises as the sclution of an integral equation,as in the

-

present context,is established by Angell and Kleinman [8.. Kr4l f}{
discusses the case of even weaker hypothesis on the density.
If u, is a radiating sclution of the Helmholtz equation then

Green's Theorem together with (9) - (11) yield the representation

ey

2u, , P eD
(3u+\ *
5, \j)(p) - D u,(P) = u, , P e aD (12)
an

o , P

4]
(w

Since g(P,q) must have singularities in D_ (there are no nontrivial

radiating wave functions in IR:) the representation (12) does not
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always bold if Y, is replaced by Yi- However the following is valid:

du 2u (P), PeD
5 (—{) (B) = Dju (P) = * * . (13)
an u+(P), pe aD

The representations (1?) and 13) yield the boundary integral equations.

Bu+ %
Sjk——; - Kj u, =u_, peaD (14)
on
Su \ " 3u
+ ] + 3
Kj (;;:} Ty (Dj u+) = ;;—, p ¢ 3D. (13)

Observe that Yy is an approximate Green's functiorn as defined by Roach
30, 11] and the present analysis may be considerec ar application cf
the ideas presented there.

Finally we adapt Ursell's notation to IR° and define normalized

spherical wave functions

. . % .
-V ik 13 (n-m)ll e,i, ! L . (e
Com (P): = { 3 %n(2n+4, TE:ETTJ Zn \krp)Pn(cos Hp)cos m‘p (16)
and
e,i ik (r-m)'n : e, m
y P ST 2 13 - . 9‘1:_ B :
Snm (P): {. 5 ,m( n+ e Zn (k p)Pn(cos .p) sin mcp
where
1, m=0
€ = ,
o 2, m >0

,1

= . . . . . e
Pn (cos ep) is the associated Legendre polynomial and ] (kr) are

the spherical Bessel and Hankel functions
e RN GY) A, .
22 ko) = 000 G,z ko) o= § ().

Similarly we denote differentiation with respect to krp by a prime so

that

Con (®

- e,i
' ~(kr ) “nm
%

® ,




and the differentiation only affects the radial functionms,

The orthogonality of spherical harmonics leads to the relations

r = e,i’ e,i ( e,i e,i’ - .
| Cnm (P)S15 (P)dsp a . C (P)Sls (P)dsp Oyn,m,2,s. (18)
r T

P p

e,i —=e,i'
r 9y = £
C o (P)Cpe (P)dsP 0,2 # n and/or m # s

3B
r
P
-~ e,li e, i’ ;
= < ’ = = = 10
2 k TS z, (krp) Zn (krp), n=Ji,m=gs 19) :
and
[ ; S
SE;I(P)Sz;l (P)dsp = 0, #nand/orm# s orm=0
:Br
p
. .
= 2 k ré Ze’l kr ) Ze’l k R = Z, = g,
> & ( > %o ( rp) n m=s (20)

"

where BBr is the surface of a sphere of radius rp =
P
Because of the expansion of the fundamental sclution which in this

notation is

x n . .
= - it i i e - 1 e S -
Y, (BQ) = T I {C (POCT (P>) + SL (P<)ST (P>): (21)
n=0 n=0
P = 1 € -~ = lA v
e < =[P if rp < T B> TP if rp > 7y
Q if rQ < Ty , Q if rQ > Ty ,
the single and double layers have the representations
0 e i e i
(Sw)(p) = - - Cc _C. (P)y+S S (P), r_ gmin T
o 1m0 1 =0 ‘mm nm inm nm o qe2D q :
|
> n g e i e |
= - - ¢ C_(r)y+s__ S (P, r_ zmax r (22)
n=0 m=0 A2 M AOE - AR gesD

and




S T g S - G P YR N, .

» 0 e' i e' _i
Dw(®) = ¢t £t¢c ¢C (Pp) + S S (P), r £min r
° n=0 m=o 72 0O “om o qesd ¢
O L i e
. = p Cnmcnm (P) + S Smn (P), * > max r (23)
n=Q m=0 ™ - P gesd ¢
where
e,i { e,i |,
s = w C ) ds y
Com I (Q m 4 q
i o [ G == et () ds (24)
Anm faD 3n_ nm q '
s&i . o { () g8l (@ ds
AT gD m q’
i = [ wig == s (q) as (25)
A JSD anq nm q 2

III The Exterior Neumann Problem

The exterior Neumann problem comsists of finding u_, a radiating

solution of the Helmholtz equation ina the sense of (1) anc (2) for

3u
which 3o " 8, P € 3D where g _ 1s a given function on the boundary.

Boundary integral equation formulations are obtained Irom Green's

theorem (l14) and (15).

I+ K.,*) wt = 8, (26)

( : ) w j 84 )
a -

—— * = ., - 27
T Dj w (KJ I)g+ Q2N

in which case the solution is represented in D, via (12) and (13) as
;'i g Lo x5 D (28)
Uy T 708,73 ] ST e Ve
Alternatively the layer theoretic approach starts with the assumed
form of the solution

u, = (Sjw) (P), P = D+LJED (29)

which with (9) yields the boundary integral equation

- m—— e ~—q-_;’\~-——‘..,.'._-.:‘-:‘.,




T T oy < e g T—

8.

(1 + Kj) wa=g.,pedsD . (30)
As in [3] we denote those real values of k for which the homogeneous
equations

(T + &) §=0 (31)
has nontrivial solutions as characteristic values of (-Kj) and observe,
since Kj is compact on LZ(GD), that if k is a characteristic value of
(-Kj) it is also a2 characteristic value for (-K?), (-ii) and (-R?).
It is of course these characteristic values which impede the solution
of (26) and (30). In Eil it was shown that the pair of equations
(26) and (27) had a unique solution for all real values of k when
j=0. The fact that a pair must be considered coupled with the
complicated nature cf (27) makes this approach difficult to Zoliow in
actually constructing solutions, for example by numerical methods.
It is this complication that is avoided by properly perturbing che
fundamental solution.

First we note the following important result.
\

Theorem 3.1: For Im kzp

(I+Kj)8=0ifandonlyif5 ¥ =0, pe 3D.

[

o) .. . .

Proof: If w = 0 the theorem holds vacuously. If j = O the result is

proven in "3.. For j = 1 the same proof applies. S,%=C, p ¢ 3D

implies S,w = 0, P ¢ D, from the uniqueness of solutions of the
S

exterior Dirichlet problem for Im k » 0. Hence Té: S;w=0 which
with (9) shows that (I + Kl) ¥ =c. Conversely z? (I +K % =0 then
again S;vw = 0, P gD _¥3D otherwise it would violate the uniqueness
theorem for the exterior Neumann problem which completes the proof.

. _ o
Also we have for nontrivial w

Theorem 3.2: TFor p e 3D,

t
:
{
I
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(I + Ko) V=0 <= Sog = 0 <=> k is an eigenvalue of the interior
Dirichlet problem.
Actually =k2? is the eigenvalue of the Laplacian but in the present paper,
as in [3], we shall understand by eigenvalues of the incerior Dirichlet
(Neumann) problem those values of k for which there are non trivial
solutions of (72 + k2) y =0, P ¢ D _and u=0 C%E-= 0), p £ &D.
This result is proven in [3]. The fact that characteristic values of
-K° are identical with eigenvalues of the interior Dirichlet problem
does not generalize to K1 because g(P,Q) is not defined throughout
D . Nevertheless, with a suitable choice of g(P,Q) we may establish

Theorem 3.3: 1f

© n
e e . e e -
P = I { + : 2
g(?,Q A (app Con®P)C (@ b S (B)S (@ (32)
with
either a g, =0 or :2anm +1 <1 (33)
and either b =0 or Ezbnm +1 <1 (34)

and k is a characteristic value of -K1 then k is an eigenvalue of the
interior Dirichlet problem.
Proof: Assume that k is a characteristic value of -Kl, i.e.

(I +R&) w=0 ' (35)
has a nontrivial solution.  Then Theorem 3.1 implies that 813 =0,
Pe D+(J8D and since g(P,q) is an analytic function of P for o £ 0,
it follows that Slg = 0 is defined for P ¢ D;\{O} and comtinuous on D,

Thus defining

g

¢ DAIC} (36)

it follows that u_ (hence u_) is a solution of the Helmholtz equation




10.
in D_\{0} which vanishes on 3D. Hence
{ GG_ . ou_
| JBD (u_ En—p -q_ E) ds_ = 0. (37) i

Let r_ be the radius of a sphere B_ entirely in D (r_ ¢ min r ).
P rp - P qeaD

Then with Green's theorem the equation (37) may be written

( ( L ( o 5 o o _= ol
\ U_ e = u_ ——) ds =0 = ! (S W— S. w -S.W — S.‘W) ds
/3B anp anp P J 3B 1" 5n_ "1 Loon, - p
r T
P P

(38)
No volume integral term arises because k is a characteristic value o?f

-Kl’ hence real. On Br
1%

’

1 o :
g(P,q)wiq) dsq = |

[s]
" " | 3D

z o e e e e !
z z {anm Enm Cnm (P) + bnm Enm Snm (P)} (39)
n=0 m=0

where we use the notation of (24) and (25) with ¥ in place of w.

. Substituting (22) and (39) in (38) we find |

'7‘:5 ¢ © 0 , . . A |
“ : ki iz = (ce (@) +a c® (@} +s%ist () +b st (P):) x 3
. ! A nm nm nm ~m am nm onm !
Tt 'BBr n=0 m=0 !
. p »
2 b fze i = =e' se i’ = ze' ~> %

‘ T { } s} B

* 5 <E£s 'Cls(P) * 3 Cls(P) * ils SLS(P) v bLs S»s( )
i=0 s=0 }
b -]

n .
- = = (c® (¢t 2 C® (p)) + s€
P (C {cnm(P) T 4nm Cnm(‘)‘ inm

51 () +5 §° <P)}) x
n=0 m-O\"‘mn nm - nm

nm

e Y

=0 s=0

«® 9 sy 1 (]

- o [ Al e 1. @ el - e ﬁ Y - 0.
j x I oz ((c,skcis(p) a2, CE R+ STISL (B b ST (M) Mds
{




Upon applying (18) ~ (20) this becomes

@ n
2r )2 Tz {|c® |2 (Ui + a
P pm=0 peo oo

(l) ¥ - . (2)'
nm hn Jn * altl:l:n Jn hn *

. la

2y (D @7
am e n

+

€ 12 4 a4 W) ., or @ () (@
'snm‘ (Jan * bnm hn Jé * bnm Jnhn * ’bnm“nn hn ) -

- c® 12 (1 oan (WY = (2, (2 (2), (1)
!cnm‘ (Jan * anm.ann * anmhn Jn +ganm ‘hn hn )

- 1e® 1201 21 . (1) = (2., ; 5 () (Ly' . L o
Sam! 2Ggdg * i + B n Ti e b R ) a0 G

where krp is the argument of all the spherical Bessel functions and

1 2 . . .
the fact that hé ) = hé ) has been used. With the Wronskian relations
. (2), . (2) . (1 . 1 i ,
In"n = g ENER B In hé ). - i? (42)
z(-

and

1L @' _ (MW" (@ _
hn hn hn hn = ]
where z is the argument of the fumctions concerned,

28 (43)

we find that (41) becomes

©
2iz o flc® iz 3 +2ja %) +1s% 12p +b_ +2{b__12)}=0(44
2ln;o m;O ~i"C“m'ﬂl4(ax:1111+é1nxx1+2’}anm" ) *l§nm! ®op nm ] om' ) )

which may also be written as

(]
t
>0
®
0
~~
—
|
[N

= '2 1e® Z(1-'9 21 L
‘ anm+l, ) + ’inm (1 .bnm+1 ) 0. (43)

It then follows from the assumptions on coefficients (33) and (33)

that

a Ce = b e

=0, (46)
nT om am lnm

hence from (39), we have Sg o= 0, 0 <r_ g min r_ but the analyticicy
qeoD




“-» -
e o

of solutions of elliptic equatioms then implies that S8 ¥ = 0,

P e D_u3D\{O0}. Since S;w’ = 0,p ¢ 3D it follows then that
Sog = 0,p ¢ 3D and, with Theorem 3.2, that k is an eigenvalue of the
interior Dirichlet problem.

It is noted that the sense of the inequalities in (33) and (34)
could be reversed without changing the conclusion, however the
sense of the inequality must be the same for all nonvanishing a .
and bnm' It should alsc be mentioned that inequalities similiar to
(33) and (34) were derived by Ursell Eﬂ although he observed that
by requiring Re am 0 and Re bnm > 0 would guarantee compliance and
thus attention could be restricted to real values of the coefficients.
These inequalities have also been employed recently by Martin 127 who
explored the relationmship with the null field method.

Theorem 3.3 establishes that all characteristic values of =K,
L

are eigenvalues of the interior Dirichlet problem. It remains to

show that eigenvalues of the interior Dirichlet problem are not
necessarily characteristic values of -K1 with g suitably chosen. First
we establish

Theorem 3.4: If g(P,Q) is as in Theorem 3.3 and }Zanm+l?<?,12bnm+1:<§
all n,m then -K1 has no characteristic values.

Proof. Assume k is a characteristic value so there exists a non-
trivial ¥ which satisfies (35). The assumptions on 3.m and b

together with (45) imply %ﬁm = %ﬁm =0 for all n 5 0 and 0 < m < m.

With (22) and (39) and the vanishing of E;m and %ﬁm we have




T
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® n .
e i . e
S,w= [ z g {CT (P) + a cC__ (P} +
1 n=0 o R® mm nm nm
+ s° ISi (P) +b__ S° (P)} =0, 0 <r_ < min r (47)
Aam CTmm nm nm ’ *

qesD

But the anmalyticity of solutions of elliptic equations then implies

that

S;% = 0, P £ D_U3D\{0}. (48)
Hence

%slé’za (-1 + KDV =0, Pcibd (49)

which, with (33) implies that & = 0, violating the assumption, and
thus establishing the result. Note that Theorem 3.4 remains valid
if the sense of the inequaliries satisfied by a - and b o is evervwhere
reversed.
We remark that the three dimensional form of Ursell's modification

using the Green's function for a sphere enclosed bv the scatterer
[131 corresponds to a particular choice of the coefficients in Theorem
3.4, It is however not necessary to require all a and bnm to be
non zero as illustrated in the following.
Theorem 3.5. If k is an eigenvalue of the interior Dirichlet problem
of multiplicity 2 then there exists a g(?,Q) with only % non zero
coefficients such that k is not a characteristic value of K.
Proof. Assume the contrary so that, with Thecrem 3.1, there exists

o , e e .
a w such that Slw = 0, pe 3D, Observe that %nm and gnm cannot vanish
for all n and m otherwise, as in the proof of Theorem 3.4, Slw =0
everywhere causing w to vanish contrary to assumptiom. However, as

shown in the proof of theorem 3.3, in order for k to be a characteristic

value of -Kl it follows from (43) that
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e 2 2.1) = |g® |2 221) =
| ot Cl2a  #1{2-1) |§m| (l2b_*#112-1) = 0 for all n and m. We
choose only one 8 . °F bnm to lie in the complex plane inside the

. . \ e e .
t-
circle of radius j and center at -} when gum or énm 1s non zero to

have a contradiction. If k is an eigenvalue of multiplicity £ tnen
the above argument may be repeated { times leading to at most 2 non
zero coefficients. With such a g, k cannot be a characteristic
value of -Kl. Additional coefficients may also be taken to be non
zero without disturbing the result. By repetition of this argument
there follows

Theorem 3.6. If k ces kN are eigenvalues (not necessarily

1 K20
ordered) of the interior Diréchlet problem of multiplicity Ll’ 12, ceey R
then there exists a g with ‘Zl &; mon zero coefficients such that

i=
kl’ Koy oney kN are not characteristic values of -Kl’ hence also not

S ard K —K* ~R_*
characteristic values of Kl’ K 1 and K1 .

IV The Exterior Dirichlet Problem

The exterior Dirichlecr problem consists of finding v, @ radiating
solution of the Helmholtz equation in the semse of (1) and (2) for

which v = f+, p € oD where f_ is giver in 35D. Boundary integral

equations are obtained from Green's theorem, (14) and (l5) which

become in this case

S;w = (I+ E_g.;) £, pc 8D (50)

and

5
(1- Kj)w - - 5;-Dj f+ (51)

in which case the solution is represented in D, via (12) and (13) as

-
1 1 ~ "
v = = Sjw = Djf+, Pz D+. (52)

+ 2 2
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Implicit in this formulation is the existence of the normal derivative
of the double layer. This can be assured inm (51) if £, is differ-
entiable on 3D and this can be relaxed somewhat by requiring the
boundary to be Lipschitz (Lyapunov. of order 1) fﬂ. In the uniqueness
theorem cited below however there is always an implicit assumption
that the double layer distributiorn has a normal derivative in a
sense sufficient to allow use of Green's theorem. That this
assumption is justified is proved in {8].
Alternatively the layer approach starts with the assumed form of
the solution
v, = - DJ.G*, PeD, (33)

which with (10) vields the boundary integral equation

+

(I - EJ.*) Wk =f ., pe 5D. (54)

As before we denote real values of k for which

(1 - KJ.)% =0 (55)
has nontrivial solutions as characteristic values of Kj which are also

characteristic values of Kaf, I_{.‘, and ﬁ; .
Paralleling the discussion in [3_ for K, we first note
~ 0
Theorem 4.1, (I-Kj*) W =0 if and only if %; Dj w* = 0, p ¢ 3D.

Proof. For i = O the proof is given in Eﬁ:. For j = 1 the argument
)

o)
is identical. Assume v, = -Dl w* where (I - K?) w

= Q. Then (10)

implies v, * 0 on 3D and, because there are no eigenvalues of the
o)

. . 3 - .
exterior Dirichlet problem, v, = 0 in D<3D. Hence — (o, w*) exists
o on
and in fact vanishes. Since w is an eigenfunction of a weakly

singular integral equation it is continuous on 3D (.6 ) and this fact

together with the assumption that 3D is Lyapunov of order 1l ensures

JR— 7 ————m——— - -e—y . o .
DR e i e 2 e S e
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3 e
that —- (D1 w*) exists and (l1) holas (f7]),which establishes the
o o o)
desired result. Conversely if %E (D1 w*) = 0 on 3D let V+=Dl w*

which then must vanish because of the absence of eigenvalues of the
exterior Neumann problem. Since v_ then vanishes on 3D, use of (10)

completes the proof.

Also, as shown in [3] we have

Theorem 4.2
-9 3 S

(I-Kg) wk = 0 <=> ey (Do w*) = 0 <=> k is an eigenvalue of the
interior Neumann problem.
As in Section III, the fact that characteristic values of Ko are
identical with eigenvalues of tue interior Neumann problem does not
generalise to K, since g(P,Q) is not defined throughout D_. Neverthe~

less we can establish the following.

Theorem 4.3. If g is defined by (32) subject to (33) and (34) and

k is a characteristic value of K, chen k is an eigenvalue of the

interior Neumann problem.

Proof: Assume (I-Kl) ¥ = 0 has a nontrivial solution which means that
)
(I-K{) w = 0 also has a nontrivial solution. Theorem 4.1 then implies
A e
o
that ey (D1 wk) 0.
Define
Q ¢oe 3
v_(P):=(=Dyw¥*) (F)==| w*(q) 5—Iv_(P,q) + g(P,q)xds_, P ¢ D_\:{0:. (56)
- - on o q
‘-oD q
and with (23) and (32)
n e 1 e
.. - = ¢ {C(P) +a__C (p): +
v_(P) ne0 meQ AT Om nm nm
e' .1 i . . -
+ 5 o iSnm(P) + bnm snm(P)"‘ < min r 37N

qesd

—

|
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' J

0o
where gzm and §:m are defined in (24) and (25) with w* replacing v .

Since 225 = 0, hence V- 0 on D)it follows that, with Green's
on 30~
theorem
¢ - - v_ - - 3v_
v —Zyds mo= | v E-T —Thas . (58)
J3Dp n 9 P ‘3B n P

Now the analysis proceeds exactly as in the proof of Theorem 3.3 with

gzm and Q:m replacing gsm and §§m respectively leading to the conclusion
that
a Ce' =} Se’ = 0 for all n > 0 and 0 < mw £ n. (39)
nminm noinm

This in turn implies that

0 r o © n ' .
= ' = 3 . e’ e e'.e .
(D_w*) (P) := w*(q) =— g(P,q)ds_ = [ T {a_C C  (P) +b_S-S_ (P)}
F4 JaD anq q =0 m=0 novnm nm nm oo
{60)
vanishes identically which means that
e e
Dl wr = D° wx for all P. (61)
o o e
But = D, w* = O hence 2 D. w* = 0O and Theorem 4.2 then emsures that
on 1 3an o

k is an eigenvalue of the interior Neumann problem, thus completing
the proof. Note that the theorem remains valid if the inequalities
in (33) and (34) are reversed.

While all characteristic values of K, are eigenvalues of the interior

Neumann problem, the converse is not necessarily true as is evident

from the following:
Theorem 4.4

If g is given by (3.2) and lzanm + 1i<1, ianm+l {< 1 for all n,m

e b -

zhen Kl has no characteristic values.

ey e <+ SR TP S MINS S, -
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Pioof: Assume k is a characteristic value so that there exists a
o o
nontrivial w* such that (I-K{) wx = Q, The fact that a and b _are
nm nm

e'

1
all non zero, together with (59) implies that C:m = Smn = 0 for all

n > 0 and O < m ¢ n Hence with (23) and (60) it is evident that

0
D, w =10, 0 <r< min r_. (62)
qedD

But the amalyticity of solutions of elliptic equations then ensures

0
wx = 0, P ¢ D_\{0} from which it follows that

that Dl
- @ '
(I + Kx) wx=0 (63)
3 )
and — D, wx = 0, (64)

on 1
- 2
But (64) together with Theorem 4.1 imply that (I-K*) wx = 0 which,
with (63), guarantees that w = O thus violating the original assumption
and establishing the theorem. As in the exterior Neumann problem
useful results obtain even with only a finite number of non zero
coefficients in the representation of g. .

Theorem 4.5,

If k is an eigenvalue of the interior Neumann problem of multiplicity

i, then there exists a g(P,Q) with only ¢ non zero coefficients such
that k is not a characteristic value of Kl'

Proof: Assume that k is a characteristic value of Kl. Proceeding as

- . e' e’ .
i 1 . = S =
in the proof of Theorem 4.3 it follows that a Cnm bnmmnm 0, as 1in

k) ]
(59). But C° and S° cannot vanish for all n >0, 0O ¢gmgmnor else
Aam ~nom o
as in the proof of Theorem 4.4, w* would vanish identically. By
e' e'
. -

choosing 3 n °F bnm different from zero for one case when C__ or inm

is unequal to zero contradicts (59) showing that k is not a

characteristic value of K. If k is an eigenvalue of multiplicicy &
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then the argument may be repeated { times with linearly independent

Ws Woy eee, W leading to at most £ non zero coefficients. Repetition
of this argument for different eigenvalues establishes

Theorem 4.6.

1s kl’ ceny kN are eigenvalues (not necessarily ordered) of the

interior Neumann problem of multiplicity Ll’ oy wves Ay respectively
- 2

then there exists a g with £ &; mon zero coefficients such that
i=1

kl’ ey kN are not characteristic values of Kl’ hence also not
characteristic values of Kl’ K{, and K*,

V Optimal Modifications

Thus far we have shown that by modifying the Green's function by
adding a radiating term of the form given by (32) with coefficients
subject only to the inequalities (33) and (34}, the characteristic
values of :Kl may be removed. Now we consider the question of
choosing the coefficients more specifically so as tc satisfy various
desirable criteria. One obvious criterionis to choose <—he modified
Green's function to be the exact Green's function for the problem iI chere

exists a coefficient choice which will accomplish this, that is, 1f the

e

nm(?)} are complete in D,(X)D,.

functions {C:m(P)Cim(Q),Sim(P)S
Tne task of finding such coefficients, which is equivalent to

determining the Green's function fcr the problem is clearly fcrmidabie.

However by modifyigg the requirement somewhat we arrive at a coefilizient

choice which is optimal in one sense of approximating the Green's

function.

Consider the Dirichlet problexz Zirst and denmote the modifiec

2
1

- . .. D
(P,q). Note that if -] were the

Green's function in this zase by -
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exact Green's function it would vanish for all q ¢ 3D and P ¢ D,.
In particular it would vanish on any sphere enclosing 3D. Thus

Theorem 5.1: The choice of coefficients

i e
C C
ComCord S o)
a = - — and b = = ———er (65)
el |2 S A
o Lz(aD) ‘ ' 'L, (3D)
minimizes the cuantitw
i 'lyDliz ds for all A > max r
R I [} (4
‘ro= 1''L, (D) p qe3p @ ‘
where
{ -
(u,v) = u(q)v(q)ds
3D /3D q
and
e =0 3
| lle(aD) [ ;

This choice of coefficients minimizes the difference between the
modified Green's function and the exact Green's functiom on L, (3D) x

X L2 (cBA) for any A > max r . H
qgeadD

Proof: Using the definitions (21) and (32) it follows that for

¢ 4 . ® n .
Di» ! o e -1 e -
N ia = T :«'
JyT ds . Dz tC__(PYIC~ (q)+a__C_ (q)_ +

P -I - ‘n= =
1 L2(3D) LI 3D 'n=0 m=0

e el e S50 !
| + Sm(P) _Snm(q)+bnm5nm(q)_. ] dsqup. (66) :

o . e e . b
Wwith the orthogonality of Com (P) and S o (P) on c A this becomes

+

]

+

!

i

[}

13
3 .
m
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w q
D . a2 (1
J vy il gpyds, = T T kA ,hé Yy 2] g
T_=A n=0 m=0 * 3D
I i e 2.0 i e 12°
‘jcnm(q)+anmcnm(q)[ +{Snm(q)*bnmsnm(q), stq ;
2 ® o (1) . . .
= 2kMA c T ' / ;2”] 1 ' e 1 — 1 e -
n=0 m=0 by (a): ‘:’Cnm‘ILz(aD)+anm(Cnm’Cnm)3D+a ComrCan’ 5p
'a 121:c® 12 tgl 1z e ol T ool gt
+ anm! Ilcnmlth(aD)+ lsnml |L2(3D) b (Snm! m)an+bm(sms nm)BD -
| ‘2tig® -
+ "bnm' \Snm"Lz(BD) (67)
which may also be written
i e -
f ® 0 . . R (C” ,C ): “
oD vas =2ka? o oD uy ot cr o amllamsp
ip =p 2 'Lp(3D)7p 0=0 m=0 © ©  am L, (8D) c® -
P - nm 'L{3D)
2
1 e i e -
. (Cnm,cm) ‘2 (Snm,snm)\
+ Ice 12 "a + 3D ‘ o2 - D +
’ nm"Lz(aD), nm e g . am' Lz(aD) g% 2
b nm“Lz(aD) ““am 'L, (3D)
| (S o Seg) : ,
i e f2 ‘ 3D ! .
+1‘Snm‘L.,(3D)‘,bnm+ ‘!!Se - " (08/

nm‘lélz(ab)
and this is clearly minimized when a o and bnm are chosen to satisfy
(65), thus establishing rhe theorem.

A natural question is whether the choice of coefficients in
Theorem 5.1 satisfiés conditions (32) and (34) ensuring that K1 has no
characteristic values. This is in fact the case which we state as

Theorem 5.2.

£ k is real, 3D is not a sphere, and & m and bnm are chosen as




in Theorem 5.1 then [2a__ + 1 |<land |2b
nm nm

Proof: With a o defined by (65) we have

But if k is real,

. . . e , .
or, denoting by u and v the real and imaginary part of ij(q)

i(u’u)BD_(V’V)SD-Zi(u’V)aD

(W) v, v) o |

0 v, v) B b (v 2= (u,u) (v, v)
(u,u) + (v,v)

and this is clearly less than one if

(u,v)¢ < (u,u) (v,v) (73)
i.e. if strict inequality holds in the Schwartz inequalitv. However
this will be the case provided u and v are linearly independent cr

explicitly if

. o . N
Jn(qu)Pn(cos cq)cos m

m A I
nn(qu)Pn(cos ,q)cos m“q (73)
are linearly independent on 3D. But jn and n are linearly independent

solutions of the spherical Bessel equation, provided rq varies on 3D

B e v Tad ror Mgt
ot . Ny o

-~ X o
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which it will as long as 3D is not a sphere. This establishes the
desired inequality for anm and precisely the same procedure establishes
the same result for bnm' When 3D is a sphere the inequalities (33)
and (34) are not satisfied.However in that case explicit results are
available to show that again K1 has no characteristic values. This is
demonstrated in Section VI.

A similar result is available if we require the modified Greern's
function, now denoted by YT (P,q) to approximate the Green's function
for the Neumann problem. Specifically we have
Theorem 5.3

The choice of coefficients

3 A1 5 .e 5 i ?o.e
< — = s
(anq Cnm’ anq Cnm)aD (an snm 3nq nm)aD
a =- - > and b = - — (76)
nm 'i o CEH nm e c se ,:-_
b anq nm L2(°D> ' dng Tom L2(°D)

minimizes the quantity

ds for every A > max r_.
P qeadD

The proof of this theorem is precisely the same as the proof of

_ . e e . 3 e
Theorem 5.1 with Cnm(q) and Snm(q) replaced by Frs cnm(q) and
5

e .. i i . . .
T0q Snm(q) and similarly for Cnm and snm' The question again arises
as to whether the coefficients specified in (76) satisfy conditions

(33) and (34) guaranteeing that -K; has no characteristic values. A

procedure exactly amalogous to the proof cf theorem 5.2, using the

definitions of a_ and bnm given in theorem 5.3 shows that the inequality

;2anm + 1 '<lis satisfied provided that

o o
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—3—{j (kr_)P™(cos §:)cos me_} and -3—{n (kr )P"(cos & )cos mo_}
sng "n q°'n q q g n q' ' n q q
are linearly independent on 3D. While this appears reasonable when

3D is not a sphere, especially in view of the comparable result in
Theorem 5.2 involving the undifferentiated functions, a rigorous
proof has thus far eluded the authors. Once established, a similar
procedure would show that the inequality }2bnm + 1 <! is also satisfied.
Yet another criterion for choosing the coefficients in the modific-
ation, and for some purposes perhaps the most meaningful criterion is
to choose the coefficients so as to minimize @ bound on the spectral
radius of the modified boundary integral operator, Kl’ This con-
sists of minimizing [lKli] and is equallv applicable in both
Dirichlet and Neumann problems. An algorithm which accomplishkes
this may also be derived. For this analysis, however, it is
convenient to change notation slightlv since the representation
of the modification as as double sum (32) is somewhat awkward
for this purpose. Note that each pair of integers (n,m),0<m<n
uniquely determines an integer 2 by

2
nftn (77)

L 1= 5 m, 0Osgmsn

and moreover each £ > 0 uniquely determines a pair (n,m) by the same
relation, since £ lies between the sum of the first n and the first
& * 1 integers for -some n. With this relationship between the

integers % and the ordered pairs (u,m) any series of the form

o n ®
b £ A _ may be rewritten as T A . Moreover by defining
n=0 =0 T 2=0
e e e e
: = = : ;o= = 78
VZL(P) : CL(P) Cnm(P) H v2£+l(P) SL(P) Snm(P) (78)
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c;22. P ) N am 0'Zﬂ.'l'l P bl - bmn (79

We may rewrite the modification (32) as

@ n @
e e e e . -
L g(P,q)= = b {anmcnm(P)Cnm(q)+bnm5nm(P)Snm(q), = 3, VL(P)vi(q) (80)
n=0 m=0 2=Q

It is also useful for what follows to have the following
ov, N
Lemma l: The sets {v;}f_o and {3;:} are linearly independent on
1=Q

3D for amy N including(+ =)

. -2 - N . . . .
Proof. Consider first the set {v,) wnere v 1is defined in

Cv (P) =0, Pe 3D
L%

1=0
(78). Assume linear dependence i.e. there exist {C:}h not all zero
=0
! such that
N
o(P) : = L

2=0
But ¢(P), P ¢ D_ is a2 radiating solution of the Helmholtz equation

with zero boundary values on dD. Therefore the uniqueness of solutions

of the exterior Dirichlet problem implies that ¢(P) = 0, P ¢ D_. In
N
: particular ®(P) = I C v (P) = O on any sphere containing 3D.  But
L'O A A

iv ; are known to be linearly independent on spheres hence C =0 ¥ &

violating our assumption and thus establishing the linear independence

N 5 3 ~ o .o . - . . 3
‘.] of ‘v . on 9D, Similarly the uniqueness of solutions of the exterior

N a

Neumann problem implies that if

N
w(®) : = I Cv (P), PeD_ and

|
¢
) N v
ot .?_u'z - ck.h_—z‘ ’O, P ¢ 3D
4 an 2=0 in

: then v = O, P ¢ D_ and again the linear independence on spheres implies
v .
A

the linear independence of {"n r on 5D,
[+]

v ———— - VTR v IR < -
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Since {v£9§_0 are linearly independent on 3D, though not
orthogonal, there does exist a dual basis of the span of {v .’ denoted

by {vn}N with the property that

=0

Vg VB oo = S (81)

In fact the functioms vé-may be represented in terms of {v,: by

N
Lpy = =
Vo (P) j;o ij vj (p) (82)

where the coefficients Cm' are solutions of the -equations
]

N N
T C . (v,v)..o= I C. (v,,v)..=°: (83)
5=0 mj «?"375D 520 mj "3’ 3D im.

For each m the set of N+l equatioms is uniquely solvable because the
linear independence of {vﬁ} implies that the coefficient matrix with
elements (vi’vj)aD is non singular.

We now are able to characterize the coefficients of the modified
Green's function which minimize the spectral radius of Kl‘
Theorem 5.4

The choice of coefficients

( 3 ) = ~d
[ YO(P,q) v vL(P)vz(q)dspdsq

; on
JBDJ 3D " "p D
O‘Y. 3vn 5 (84)
=2 112,
i anp HL‘(SD)

in the modification (80) minimizes ZQKIE{L ( D) hence minimizes an
2

upper bound on the spectral radius of K,.
roof: The operator norm will be minimized if the coefficients in the
s o . R ';I, ’*2 - R . . th
modification minimize ”hlw"Lz(aD) for each v ¢ LZ(BD) But in the

present notation

AL an TS AN o -
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N [ 3Y v,
llrclwlll_ (3D) mlw Bw) 5o 'IBDJ Do =(2,0) 3=(P,q))w(q)u(q,)ds 45 4, *
P P 1

r ( ayo N av F?y N_ o
S e o ey @IGNR e £ 5 2T (o) le @y,
<3D‘sD/3D “p 2=0 P p 2=0 P

'dsq dsq1 dsp (85)

and we have a standard problem of minimizing a quadratic form. The
necessary conditions for a minimum are the vanishing of the gradient

(with respect to the coefficients) and, since the >  may be complex, the

derivatives with respect to the real and imaginary parts of 8
will vanish sevaratelv. Thus

( f "“V aY N - 9 - - -
| -——-(P)v (q)'*-—{P,q)+ !¢, —v (P)v (qy). *
; aDJ aD) 8D :mp p L’O £ an X L 1
. 3Y N ov - _
o m ‘P)v (ql).——-{P,q)+ Z cf;;—(?)v,(q)J}w(q)w(ql)dsqu ds =0
- anp P =0 * Tp ~ 1 q‘l p
m=0,1, 2, ... (86)

and therefore

( ( ( ov I "{ ) N -
e L e @ Reor t o P Tu(@) .
’2¢ 'BDJQDJSDanp v, g=0 * E,np(P)v£(q)_w(q)v.r(q)clsquqldsp
ro aG By Noavy -
; =V ). . —2(P) [===(P,q)+ —=(P)v (q).w(q)ds ds_=0
! m 3D D - 3D In b 3 230 @ anp 9 qQ P

m 30 . (87)

- e mm

Since this is to be true for all w ¢ LZ(BD) we must have

; ¢ By, N BV, -
; Lm0 s PV (@)Jds, 20, m 30 (88)
- 3D P p =0 P

Forming the inner product with vZ (q) and using (81) estblishes that a.

is given by (84).

.
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It remains to show that this choice of coefficients provides a
minimum. That is, if we denote by K; the modified operator with
coefficients as specified by (84) and by K, the modified operator with
any other choice, we must verify that

;|K§wi§ < ]IKlwi! for all w e L, (3D).

Let the coefficients in the modification be denoted by

a, = ag + € (89)

”
A A

where a? are defined by (84). Then

- 1 [ aYo N o av, )
i!K1Vii“ 'J il 3;—(P,q)+ z (&,'*ejt;r(P)v_(q)}w(q)ds i4ds_ =
L,(3n) /D <30 “p gm0 & 7Ry @ 7
o ) roror N N _ oV, 8‘\-7m _ _
= K wi | + T I oe.e=—(Pv (QQ=—(®P)v_(q,)w(q)w(g,) x
t i 3
1L, (D) JaDJaDJaD p=0 @m0 ~ 2M,  h em mtmitl !
x ds ds_ds =
Q g P
012 N N _ v, avn - -
= Kw|!l2 o+ I e (z=,=) (v,w (v_,w) (90)
Kl Lz(oD) gm0 m=Q ~ @ o0 an s~ sp B sp
where the linear terms in ¢, vanish because of the choice of a?. Upon
A &

making the substitution
z = EQ(VQ’W)BD

o
A

the validity of our result is seen to depend on the positivity of the

quadratic form N N v, v

c ez (=, =D

“« - £ ‘m*3n ’ Bn D"

=0 m=0 X

N v
But, constructing an orthonormal set {u;};’o from {;—*} , .8
B a0 -

using a Gram—-Schmidt procedure and the linear independence of {g;L ;
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Bvl N
m EO Cll Yi

for each . Then

v, v N N
( % m) s z C’:i cm (ui,u )
o 3m o,y i=0 j=0 J J 3D
N -
_ - C. C. =ccx (91)
i=0 * ™

where C is the macrix with elements C.. and C* is the Hermitian conjugate.

However CC* is positive semidefinite :}4, PGQj which compleres the

proof.

oy
[e]

We remark that if (P,q) eL,(3D), which is true in IR< but

anp 'qedD

not in IR-, one could also choose the coefficients to minimize

‘ ; '?’Yﬂ
‘ j *3;1 (P,q)i2 ds_ds . However this process would lead to
-3D -3D *%p Pod

exactly the same coefficients specified in Theorem 5.4.
It should also be remarked that while Theorem 3.4 does provide an

optimal choice for the coefficients 2., it requires the explicit

A

construction of v; . While this is possible with (82) it involves

solving (83) for the (N+1)¢ coefficients ij and this certaialy

represents a numerical complication for large N. If the {v : were

orthogonal on 3D i.e. when D is a sphere, then

v,
y4 = = (92)
oy, s
X Lz(aD)

and therefore it is proposed that even for non-spherical boundaries, a

reasonable choice is provided by

I . - > - L omear -

e g ¥
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- (P, - (P d d
JBDJ‘&D vy (?,q) o (®) vy (@ s, ds,

ag = - 7 L £ (93)

—_ 2 112
|lanp |IL2(3D)ll”2=!L2(aD)

Although the comsequences of this choice have not been analysed, it is
expected to be useful for numerical purposes at least for boundaries
which are not severe perturbations of a sphere. An even simpler
approximate choice is given in section VII, motivated by further

results for a spherical beundary.

Vi An Example

The explicit coefficient choices found in the last section simplify
considerably when the boundary is a sphere and these results are
presented here. They provide the basis of a coefficient choice which,
while not optimal, is convenient and hopefully useful for numerical
purposes.

Approximate Dirichlet Green's Function

It is perhaps not surprising, since the modification of the Green's
function is in terms of spherical wave functions, that in the case when
k is real and 3D is a sphere the coefficients in Theorem 3.1 render
y? the exact Green's function, or more precisely (because of our choice
of free space Green's function (3)) Y? differs from the exact Green's
function for the Dirichlet problem by a factor of %. If 5D is a sphere

of radius a then with (16) it follows that for k real,

{ i =e
J 3pinm () Con (V45 Len P 5 (ka)
a » - = - ‘(1> " = - (1) (9[‘)
nm £ 1c® (q)1%as b7 (ka) ' h " (ka)
ip ™ 4 n "

and similarly
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' 3l.
|
I .
J_(ka)
b= -
nm [6)) ‘
hn (ka)
Then
5 a © S (ka)hél)(krd -
y.(P,q)== 55— = (2n + 1) 1] (kr<)=jp 'h " (kr>)P_(cos Z_ )
! 27 =0 ° n L (ka) L0 ° pa
(93%)
where
cos E-pq = cos -:vp cos :q + sin —:-p sin Eq cos(cp-:q) (96)
and the relation
o (p=m)! m m
P e = © ¢ : £ )P & - 7
-n(cos 'pq> m;O s (arm) ] Pn (cos -p)-n(cos cq)cos m(c:p cq) (97)
has been used. Furthermore i
D [}
Yl (p,Q) = 0, rq = a (98)
and, using the Wronskian (42),
5\’? ® h;l)(kr )
T(P,q) = - 2n+1) _ETT—L P (cos €_ ), r, > a. (99)
q 272 n=0 hn (ka) P4 :
By?
If r_ = a then e exists as a distribution im LZ(BD) with the
q
representation
a"(? = «® [} ]
— o ik . rl ., (L 1. (L _: (L) -
on (P,q) 5T - (2n+1) L-z-jn(ka)hn (ka)+ 2_1_‘_l(ka)hn (ka) Jn(ka)hn (ka)
q n=0
? (cos S_)
n( Pq

®

_———— e e

--to o (o) P (cos &) (100)
4ra? n=0 P
Wwith (38) we see that
(1o1)

Slwao A4 wst(aD)

kit v ' Fy y -
& - D e Lo e i il




therefore using the Green theorem approach, the solution of the

Dirichlet problem is simply, with (52) and (101)

h(l)(kr ) 7 2n

1 1 - n ‘ :
v == 5D f = -— I (2n+l) ] de | do_sint f (q)P_(cos £ ). r
vl b (1)(ka) ‘o T ¢ 370 Pa
(102)
On the other hand using the layer approach we have
- - 1 % v r2m -
Kfuk = - = T (2n+l)l de d¢ sin 8 P_(cos &_ )w*(q) =
1 4w n=0 Jo qJO q qgn pq
= - wk(q) ¥V w* ¢ L, (3D) (103)

because the spherical harmonics are complete on L,(3D). Therefore
(54) becomes

2wk =f (104)
which with (53) again yields the solution (102).

Approximate Neumann Green's Function

In a manner similar to the above, when 5D is a sphere of radius a
the coefficients specified in Theorem 5.3 reduce, with (16) and

L orthogonality to

jé(ka)
a _=b == (105)
o oo hélj (ka)

hence the modified Green's function becomes

® i'(ka)

! e q)---Ji L (o+1) [ (k<) fl (1)(kr<):hé1)(kr>)Pr(cos : ) =
. " n=0 (ka) Pq
!
| ® h(l)(kr ) )
i = 7z (2n+l) -—rjrr———- P (cos 3 » Ty =2 (106)
N 2rka? n=0 (ka)
t
i Moreover
! N
EASH
5—: (P’q) rp > a (107) y
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while for rp = 3, 33—(P'q) exists as a distribution on L, (3D)
q

with the representation,

N
R 12 ® '

1 ik 1 . ¢D) 1. 1 . -
3;—(P,q)’-~—;— z (2n+1)[-53n'(ka)hn (ka)+ E'E(ka)hé )(ka)-J;(ka)hél)(ka)_ >

q n=0

P 5 2 ) =
g n(co Pq
- ; (2n+1) P _(cos = ). (108)
4ra® n=0 n Pq

With (107) we see that

D1 wk = Q) rp >avVv w*eLz(GD). (109)
Therefore using the Green's theorem approach the solution of the

Neumapn problem is with (28) and (109)

L L hél)(kr ) qm o q2m
U ® 5.8 = ~— I (2p+l) | d&_ d¢ sin & g (q)P_(cos =__ ;.
v 1% Tk oo hnl (ka) 10 1y 'a q=+ 1 n Pq

(110)

On the other hand using the layer approach we have, with (108) and

‘the completeness of the spherical harmonics on L2( D)

1 ® (ﬂ (Zﬂ
K/w = === I (2n+l)! d8_, dec_ sin ¢ w(q)P_(cos & ) = (111)
1" dra® o o g Ta q n Pq
= w(P) Vw e Lz(aD).
Therefore (30) becomes
2w = g, (112)

which with (29) again vields the scolution (110).

Minimum Spectral Radius

It is of some interest to compare the above results with the

coefficients obtained by minimizing the spectral radius of the

modified operator when 3D is a sphere. The coefficients specified
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in Theorem 5.4 simplify as noted in (92) and (93). Thus with (78),

(79) and (21) we have

{ 3_ P ~e
| J ¥, (Bs q)j ( )Cm(q)dsqdqp

oC H
L, (3D)

_—E mvn

rooe © T . s
; 1 - 3 ot
z (C (q)SE-CrU(P)+C (Q)———C (P))———C (p)ct (q)dspdsq

-

3D/ 3D r=0 .=0° T¥ P p

(ka)j' (ka)+3n(ka)h(l)'(ka) h(z)'(ka)héz)(ka)

(0’ 2) 9 (2)
LIy (ka)hn (ka)hu (ka)hn (ka)

i! (ka) j (ka)
- % n(1)’ (1) (1)
a (ka) i

A similar analysis shows that in this case

Ss041 = bnm =a - (114)

With a__ and b__ so defined the modified Green's function becomes, using

(95) and (106)

» vy (Pq)=

ik /J (ka) ip(ka) (1), (1)
& - = T (2n+1) J (kr<)= 3 (ka) th (kr ) x
2n \;17( (ka) h(l) (ka) n P

n-O

[

i

!
B
'

i
§
!

~ - 3@+ e

x Pn(cos qu)

(113)




Hence with (98) (99), (106) and (107) we see that

1N
P = = -
v, (P,2) 371 (B,q), . (116)
3y, (P,q) A
1Y 1 5 D =
anq 7 Yl(P,qgl, r, > (117)

Moreover with (100) and (108) we have

ayl(P,q)
=0, r_ =a, (118)
anq ?

But this last result implies that

Kjwe=Kew =0 ¥ welL,(3D) (119)
hence the spectral radius orf the modified operator is zero. Observe
that with (103) and (111) the spectral radii of the modified operators
generated by y? and yf are both equal to one.

As a consequence of (119) we have

D1(81g+) =-58, PeD Vg e Lz(aD) (120)
and 5
Sl( I le+) = D1f+, PeD, v £, ¢ Lz(cD) (121)

Equation (120) follows from the uniqueness of solutions of the exterior
Dirichlet problem and observing that with (10) and (119)

1l:o.i,;1+ D, G, * 58] =0 (122)

-

whereas (121) follows from uniqueness for the exterior Neumanr problem
and observing that with (9) and (119)

3 e 2
— “sl(ﬁ le

- T = 3
PEy ) le_,_; 0 (123)

+
To solve the Dirichlet problem with this modified operatcr we have

with (51) and (119) and (52)

S.w - LD f =-is5 Df)-%nlf+, PeD (L24)

Vo © 2 2 1%+ 2 1(35 17+
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but with (121) and (117) this becomes
. 173 D
V+ - - Dl.t+ = - 3 ",\D a—nq- Yl (P,q)f+(q)d5q (125)
‘0

in agreement with (102). Similarly using the layer ansatz, (54) and
(119) imply that
wk o= £
and then (53) yields the same solution (125).
To solve the Neumann problem, (26) and (119) yields

W= Sg (126)

and with (28)

(SIS

1
u =§-S

. D, (Sy8,)- 127)

Using (120 and (116) this becomes

1 N ‘g
U+ = Slg* = -2— &‘ YI(P’q)g‘(q)dsq (L28)
‘3D
in agreement with (110). With the layer approach (30) and (119) imply
we=g, (129)

which together with (29) again yields the solution (128).

The remarkable result (119) shows that the spectral radius of the

g, -

.}Aw‘.

modified operator is zero in this sphere example when none of the
coefficients in the modification vanish. For applications one would

like to know the effect on the spectral radius of the modified operator
P

if only a finite number of coefficients are chosen optimally while the

Lal)

remainder are taken to be zero i.e. modifications of the form

N M
- - e e e e , .
. n:o m:o ananm(P)Cn(q) + bnmsnm(P)Snm(q). In this case the optimal

coefficients are again given by (113) and (114). However, instead of

(118) we £ind that for rp = a,

[ ey —
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3y, (P,q) 2 ®
1 ik .1 69 . (' \ -
vy - I (2n+1){_]n(ka)hn (ka)+3n(ka)bn (ka),Pn(cos z )
q n=N+]
(130)
{' ng(P$Q)
and K,w = | w(g) ds
Kl /3D anq q

so that, using the orthogonality of the spherical harmonics,

! 12 o 2q.o kK7a% Loy (1) . (1) -

;Klw‘,L GO \Klw) ds= —— - (2n+1)],n(ka)hn (ka)*]n(ka)hn (ka) -.
2 +:D n=N+1

[ -
ol 1 P (cos(d_)w(q)wéq,)ds ds
!3pisp “aqy (@wtapds, 9
(131)
But w(q) ¢ Ly( D) => w(q) = < Yn(éq,¢q) where Y are gemeral spherical
n=0
harmonics and
. -
, 1 P _(cos(e__ )w(q)w(g)ds ds
‘3pi3p B 99y 19
- hmal [ 2 A igliz
eS| ,aD“‘n(cq’¢ql)‘ 8, ol YL, (3D) (132)
Therefore
i 1z bljoil2 -
L'Kl"“x_z(an)‘((ka) YL, (aD)

' ~
ke b (kay+ i ka)n P (ka) 12 - (133)
n o hot n
n=N+1
Using very crude estimates for the spherical Bessel and Hankel functions
it may be shown that there exists a constant C, independent of ka and N,
such that

(ka) 2
C (1) (! a Ce
EJA(ka)hn (ka)+jn(ka)hn (ka) ;= <

hence

(kaft (2n+1)2

(134)
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] ka)2 (ka)?
| &9l amys L, (apyce i I (2ni1)—’ <l1wiif (pyce
? N+l
and Ll%ﬁ (135)
, Ce
] HR ] < — (136)

Thus for any value of ka it is clear that E{Klﬂi < 1 for N large enough,
and therefore the spectral radius of the modified operator can be made

! less than one with only a finite number of nonzero coefficients in the
modification.

VII Concluding;gemarks

In this paper we have shown how the modified Green's function
approach of Jjones and Ursell can be extended to both Dirichlet and

Neumann provlems for the Helmholtz equation in three dimensions giving

rise to an integral equation of the second kind that is uniquely
solvable for all real values of k. In addition we have shown how to
choose the coefficients in the modification optimally, either to best
approximate che Dirichlet or Neumann Green's function or to minimize
the norm of the modified overator. The optimal results were
exhibited explicitly for the sphere where it was also shown that only a
finite number of coefficients need be chosen different from zero to

force the spectral radius of the integral operator to be less than one

) for any finite value of ka.

S The coefficients for which the modified Green's fumction best
approximates the exact Green's function are given explicitly (Theorems
5.1 and 5.3). However the coefficients which minimize the spectral
radius (Theorem 5.4) require the construction of a dual basis for

{cim » Sgp: on 3D.  For nonspherical %D and large values of X this ‘

8
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may be a considerable numerical complicationm and one possible
simplification has been proposed, (93). The explicit results for
the sphere allow still another even simpler coefficient choice.
Comparing the explicit results for the coefficients which give the
best approximation to the Dirichlet and Neumann Green's functions
when 3D is a sphere, equation (94) and (105) with the coefficients
which minimize the norm of the modified operator (1l13), we

find that these latter coefficients may be written as

: act st .
(et ,c®) (== =)
a g_‘LJ om’>“om’'3D . "5 m ' 3m " 3D (137)
no 2 jce j12 13 8 12
nm"Lz(BD) ""3n mm' LZ(BD)J
and
i e 3 <l 3 e®
- ljlsnm’snm)aD . (35 San’%m Som’ 5D (138)
am ZL"“Se 112 :lé_ se Hz
*“mm' 'L, (3D) on “om''L,(3D) .

While the coefficients thus defined minimize the norm of

K only when 3D is a sphere, it is proposed that this choice be used
for nonspherical surfaces as well. It is easy to demonstrate that
conditions (33) and (34) which ensure that K1 has no characteristic

values is fulfilled since

i e ac._ac
2a s»1f='—-(C“"”C“‘“)aD + L. (55 Fap
| :‘Celzz 2 {:_é_ceUg
A nm' 'LZ(BD) 'an om' |L2(3D)
~e e BE:m 3Crem
L (ComCom’ 5D (=0 5 I
| 21c® i1z EEPCIET
2 Gl 2 5e S ‘Lz(sn)!
=e .e :
(cmn,cnm)w: . %_ - o
e -.
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where the last inequality follows from Theorem 5.2. A similar analysis
shows that ianm*l |<l. It is reasonable to expect that with the
coefficients defined by (137) and (138) the spectral radius of the
modified operator, which is zero when 5D is a sphere, will remain less
than one for a class of nonspherical surfaces and furthermore if only

a finite number of coefficients are taken to nonzero, defined by

(137) and (138), the spectral radius will be less ome in an interval in
k which increases with the number of nonzero coefficiemts. A
characterization of this class of surfaces and relationship between

the geometry, values of k for which the spectral-radius is less than
one, and the number of nonzero coefficients comnstitute a class of

problems that remain to be solved.
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